
tarantool-queue Documentation
Release 0.1.4

bigbes

October 29, 2015

Contents

1 See Also 3
1.1 Queue API . 3
1.2 Quick Start . 5

Python Module Index 11

i

ii

tarantool-queue Documentation, Release 0.1.4

Python Bindings for Tarantool Queue.

Library depends on:

• msgpack-python

• tarantool

Basic usage can be found in tests. Description on every command is in source code.

Big thanks to Dmitriy Shveenkov and Alexandr (FZambia) Emelin.

For install of latest “stable” version type:

using pip
$ sudo pip install tarantool-queue
or using easy_install
$ sudo easy_install tarantool-queue
or using python
$ wget http://bit.ly/tarantool_queue -O tarantool_queue.tar.gz
$ tar xzf tarantool_queue.tar.gz
$ cd tarantool-queue-{version}
$ sudo python setup.py install

For install bleeding edge type:

$ sudo pip install git+https://github.com/tarantool/tarantool-queue-python.git

For configuring Queue in Tarantool read manual Here or read Prepare server.

Then just import it, create Queue, create Tube, put and take some elements:

>>> from tarantool_queue import Queue
>>> queue = Queue("localhost", 33013, 0)
>>> tube = queue.tube("name_of_tube")
>>> tube.put([1, 2, 3])
Not taken task instance
>>> task = tube.take()
>>> task.data # take task and read data from it
[1, 2, 3]
>>> task.ack() # move this task into state DONE
True

That’s all, folks!

Contents 1

https://github.com/tarantool/queue/
https://github.com/FZambia
http://tarantool.org
https://github.com/tarantool/queue

tarantool-queue Documentation, Release 0.1.4

2 Contents

CHAPTER 1

See Also

• Documentation

• Repository

1.1 Queue API

Basic Definitions:

• ttl - Time to Live of task.

• ttr - Time to Release of task.

• pri - Priority of task.

• delay - Delay for task to be added to queue.

Warning: Don’t use constructor of Task and Tube. Task’s are created by Tube and Queue methods. For creating
Tube object use Queue.tube(name)

class tarantool_queue.Queue(host=’localhost’, port=33013, space=0, schema=None)
Tarantool queue wrapper. Surely pinned to space. May create tubes. By default it uses msgpack for serialization,
but you may redefine serialize and deserialize methods. You must use Queue only for creating Tubes. For more
usage, please, look into tests. Usage:

>>> from tntqueue import Queue
>>> queue = Queue()
>>> tube1 = queue.create_tube('holy_grail', ttl=100, delay=5)
Put task into the queue
>>> tube1.put([1, 2, 3])
Put task into the beggining of queue (Highest priority)
>>> tube1.urgent([2, 3, 4])
>>> tube1.get() # We get task and automaticaly release it
>>> task1 = tube1.take()
>>> task2 = tube1.take()
>>> print(task1.data)

[2, 3, 4]
>>> print(task2.data)

[1, 2, 3]
>>> del task2
>>> del task1
>>> print(tube1.take().data)

3

http://tarantool-queue-python.readthedocs.org/en/latest/
http://github.com/tarantool/tarantool-queue-python

tarantool-queue Documentation, Release 0.1.4

[1, 2, 3]
Take task and Ack it
>>> tube1.take().ack()

True

DataBaseError
alias of DatabaseError

exception NetworkError(orig_exception=None, *args)
Error related to network

Queue.deserialize
Deserialize function: must be Callable. If sets to None or delete, then it will use msgpack for deserializing.

Queue.peek(task_id)
Return a task by task id.

Parameters task_id (string) – UUID of task in HEX

Return type Task instance

Queue.serialize
Serialize function: must be Callable. If sets to None or deleted, then it will use msgpack for serializing.

Queue.statistics(tube=None)
Return queue module statistics accumulated since server start. Output format: if tube != None, then output
is dictionary with stats of current tube. If tube is None, then output is dict of t stats, ...} e.g.:

>>> tube.statistics()
or queue.statistics('tube0')
or queue.statistics(tube.opt['tube'])
{'ack': '233',
'meta': '35',
'put': '153',
'release': '198',
'take': '431',
'take_timeout': '320',
'tasks': {'buried': '0',

'delayed': '0',
'done': '0',
'ready': '0',
'taken': '0',
'total': '0'},

'urgent': '80'}
or
>>> queue.statistics()
{'tube0': {'ack': '233',

'meta': '35',
'put': '153',
'release': '198',
'take': '431',
'take_timeout': '320',
'tasks': {'buried': '0',

'delayed': '0',
'done': '0',
'ready': '0',
'taken': '0',
'total': '0'},

'urgent': '80'}}

4 Chapter 1. See Also

tarantool-queue Documentation, Release 0.1.4

Parameters tube (string or None) – Name of tube

Return type dict with statistics

Queue.tarantool_connection
Tarantool Connection class: must be class with methods call and __init__. If it sets to None or deleted - it
will use the default tarantool.Connection class for connection.

Queue.tarantool_lock
Locking class: must be locking instance with methods __enter__ and __exit__. If it sets to None or delete
- it will use default threading.Lock() instance for locking in the connecting.

Queue.tube(name, **kwargs)
Create Tube object, if not created before, and set kwargs. If existed, return existed Tube.

Parameters

• name (string) – name of Tube

• delay (int) – default delay for Tube tasks (Not necessary, will be 0)

• ttl (int) – default TTL for Tube tasks (Not necessary, will be 0)

• ttr (int) – default TTR for Tube tasks (Not necessary, will be 0)

• pri (int) – default priority for Tube tasks (Not necessary)

Return type Tube instance

1.2 Quick Start

1.2.1 Prepare server

1. Install tarantool on your favourite OS. For more information, please refer to User Guide (Section: Downloading
and installing a binary package).

2. Download tarantool.cfg and init.lua from Queue repo

$ wget https://raw.github.com/tarantool/queue/master/tarantool.cfg # Download configuration file for tarantool
$ wget https://github.com/tarantool/queue/blob/master/init.lua # Download queue script
$ tarantool_box --init-storage # Init tarantool storage files
$ tarantool_box # Start tarantool

Done!

1.2.2 Install tarantool-queue-python

using pip
$ sudo pip install tarantool-queue
or using easy_install
$ sudo easy_install tarantool-queue
or using python
$ wget http://bit.ly/tarantool_queue -O tarantool_queue.tar.gz
$ tar xzf tarantool_queue.tar.gz
$ cd tarantool-queue-{version}
$ sudo python setup.py install

1.2. Quick Start 5

http://tarantool.org/tarantool_user_guide.html
https://github.com/tarantool/queue

tarantool-queue Documentation, Release 0.1.4

1.2.3 Connecting to server and basic operations

In the beggining you must import tarantool-queue and create Queue object:

from tarantool_queue import Queue
queue = Queue('localhost', 33020, 0)

Queue object is an aggregator for Tubes: Tube is the queue. When you put task into queue, you associate name of
tube with it. When you take task, you take if from some tube. For the beggining you must create Tube object with
Queue.tube(name) method. Basic operations for Tubes are: Tube.put(task) and Tube.get() When you have done all
you want with this task you must make Task.ack() it or Task.release() it back to the queue.

On producer:
appetizers = queue.tube('appt-s')
appetizers.put('Egg-Bacon') # put meal
appetizers.put('Egg-Sausage-Bacon')
appetizers.put('Egg and Spam')
appetizers.put('Egg-Bacon and Spam')
appetizers.put('Egg-Bacon-Sausage')
appetizers.put('Spam-Bacon-Sausage-Spam')
appetizers.put('Spam-Egg-Spam-Spam-Bacon-Spam')
appetizers.put('Spam-Spam-Spam-Egg-Spam')
Spam, Spam, Spam, Spam... Lovely Spam! Wonderful Spam!
...

On consumer number 1 (Viking):
appetizers = queue.tube('appt-s')
meal = appetizers.take(30) # wait for 'meal' in blocking mode for 30 seconds
while meal is not None:

if meal.data.find('Spam') == -1: # we don't want meal without spam
meal.release(delay=1)

else:
eat(meal.data) # do something
meal.ack() # acknowlege, that you did all you want with this 'meal'

meal = appetizers.take(30) # take next meal
exit(1) # no meal for 30 seconds, go out from here

On consumer number 2 (Missus):
appetizers = queue.tube('appt-s')
meal = appetizers.take(30) # wait for 'meal' in blocking mode for 30 seconds
while meal is not None:

if meal.data.find('Spam') != -1: # she is tired from spam
meal.release(delay=1)

else:
eat(meal.data) # do something
meal.ack() # acknowlege, that you did all you want with this 'meal'

meal = appetizers.take(30) # take next meal
exit(1) # no meal for 30 seconds, go out from here

What if we forget to ack or release the task?

Task class has destructor, that automaticly releases the task, if you have done nothing with it. e.g:

You're consumer of some great spam:
def eat_spam(tube):

meal = tube.take()
if (meal.data.find('Spam') != -1)

6 Chapter 1. See Also

tarantool-queue Documentation, Release 0.1.4

meal.ack()
consume(meal) # do_something

return # oops! we forget to release task if it has not spam in it!
but that's ok, GC will do it when his time will come.

What data we can push into tubes?

Queue uses msgpack (It’s like JSON. but fast and small) for default serializing of data, so by default you may serialize
dicts, tuples/lists, strings, numbers and others basic types.

If you want to push another objects to Tubes you may define another serializers. By default serializers of Tubes are
None and it uses Queue serializer. If you set Tube serializer to callable object it will use it, instead of Queue serializer.
e.g.:

import bz2
import json
import pickle

from tarantool_queue import Queue

queue = Queue('localhost', 33020, 0)

jsons = queue.tube('json')
jsons.serialize = (lambda x: json.dumps(x)) # it's not necessary to use lambda in your projects
jsons.deserialize = (lambda x: json.loads(x)) # but object, that'll serialize and deserialize must be callable or None

pickls = queue.tube('pickle')
pickls.serialize = (lambda x: pickle.dump(x))
pickls.deserialize = (lambda x: pickle.load(x))

bz2s = queue.tube('bz2')
bz2s.serialize = (lambda x: bz2.compress(json.dumps(x)))
bz2s.deserialize = (lambda x: json.loads(bz2.decompress(x)))

default = queue.tube('default')

jsons.put([1, 2, 3]) # it will put [1, 2, 3] in json into queue.
pickls.put([2, 3, 4]) # it will pickle [2, 3, 4] and put it into queue.
bz2.put([3, 4, 5]) # it will bzip' [3, 4, 5] in json and put it into queue.

default.put([4, 5, 6]) # msgpack will pack it and put into queue.
queue.serialize = (lambda x: pickle.dump(x))
queue.deserialize = (lambda x: pickle.load(x))
default.put([4, 5, 6]) # but now it'll be pickled.

to reset serializers you must simply assign None to serializer:
queue.serialize = None # it will restore msgpack as serializer
queue.deserialize = None # it will restore msgpack as deserializer
bz2s.serialize = None # it will tell python to use Queue serializer(msgpack) instead of bz2
bz2s.deserialize = None # it will tell python to use Queue deserializer(msgpack) instead of bz2
default.put([4, 5, 6]) # msgpack will pack it again.

But, i have very important task that needs to be done!

It’s OK! You must use Tube.urgent(data)!

1.2. Quick Start 7

http://msgpack.org/

tarantool-queue Documentation, Release 0.1.4

appetizers = queue.tube('appt-s')
appetizers.put('Egg-Bacon') # put meal
appetizers.put('Egg-Sausage-Bacon') # another boring meal
appetizers.urgent('Spam-Egg-Spam-Spam-Bacon-Spam') # very very tasty meal with a lot of SPAM

meal1 = appetizers.take() ; print meal1.data # Spam-Egg-Spam-Spam-Bacon-Spam
meal2 = appetizers.take() ; print meal2.data # Egg-Bacon
meal3 = appetizers.take() ; print meal3.data # Egg-Sausage-Bacon

meal1.ack() ; meal2.ack() ; meal3.ack()

Ok! But i’ve some spam today! I want to know how much.

appetizers = queue.tube('appt-s')
appetizers.statistics() # will show you how many spam you've 'baked' and 'sold'
queue.statistics() # will show you overall stats of your cafe

I have some spam, that is so awfully bad, that i want to bury deep inside.

appetizers = queue.tube('appt-s')
task = appetizers.get()
task.bury() # it will bury meal deep inside
task.dig() # it will 'unbury' meal, if you'll need it in future.
task.delete() # it will destroy your 'meal' once and for all.
appetizers.kick(number) # it will 'unbury' a number of tasks in this Tube.
task.done('New great SPAM with SPAM and HAM') # or you may replace this 'meal' with another.

But Task.release() returns task into the beggining! I want it to be in the end!

Simply use Task.requeue() instead of Task.release()!

SUDDENLY I have UUID of my ‘meal’, and i REALLY REALLY want this meal. What should i do?

You must use Queue.peek(uuid) method!

appetizers = queue.tube('appt-s')
meal_uuid = '550e8400-e29b-41d4-a716-446655440000'
task = queue.peek(meal_uuid)
print task.data # Spam-Egg-Spam-Spam-Bacon-Spam

Question-Answer

Q. What should i do, to use my own great tarantool connector in this Queue? How may i reset it into defaults?

A. You must simply use Queue.tarantool_connector field for setting it. Just ensure that your connector has construc-
tor and call fields.

For reseting it simply do:

del(queue.tarantool_connector)
OR
queue.tarantool_connector = None

8 Chapter 1. See Also

tarantool-queue Documentation, Release 0.1.4

Q. I’m using another great coroutines library! I really need another locking mechanism, instead of your thread-
ing.Lock.

A. It’s ok! You may simply set Queue.tarantool_lock field with your lock. Just assure that your locking mechanism
has __enter__ and __exit__ methods (your lock will be used in the “with LOCK:...” construction)

For reseting it simply do:

del(queue.tarantool_lock)
OR
queue.tarantool_lock = None

And Now for Something Completely Different..

1.2. Quick Start 9

tarantool-queue Documentation, Release 0.1.4

10 Chapter 1. See Also

Python Module Index

t
tarantool_queue, 3

11

tarantool-queue Documentation, Release 0.1.4

12 Python Module Index

Index

D
DataBaseError (tarantool_queue.Queue attribute), 4
deserialize (tarantool_queue.Queue attribute), 4

P
peek() (tarantool_queue.Queue method), 4

Q
Queue (class in tarantool_queue), 3
Queue.NetworkError, 4

S
serialize (tarantool_queue.Queue attribute), 4
statistics() (tarantool_queue.Queue method), 4

T
tarantool_connection (tarantool_queue.Queue attribute),

5
tarantool_lock (tarantool_queue.Queue attribute), 5
tarantool_queue (module), 3
tube() (tarantool_queue.Queue method), 5

13

	See Also
	Queue API
	Quick Start

	Python Module Index

